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ABSTRACT 

This paper studies series of independent random variables in rearrange- 
ment invariant spaces X on [0, 1]. Principal results of the paper concern 
such series in Orlicz spaces exp(Lp), 1 ~ p ~ c~ and Lorentz spaces A¢. 
One by-product of our methods is a new (and simpler) proof of a result 

due to W. B. Johnson and G. Schechtman tha t  the assumption Lp C X, 
p < oc is sufficient to guarantee tha t  convergence of such series in X 

(under the side condition tha t  the sum of the measures of the supports 

of all individual terms does not exceed 1) is equivalent to convergence in 

X of the series of disjoint copies of individual terms. Furthermore, we 

prove the converse (in a certain sense) to tha t  result. 
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1. I n t r o d u c t i o n  

It follows from the classical Khintchine Inequality that for all p E [1, oc), the 

Rademacher system {rn}n°°=l, given by rn(t) = sgnsin(2nTrt), t E [0, 1) in the 

Lp-spaces on the interval [0, 1] (equipped with Lebesgue measure A) is equiva- 

lent to the unit vector basis {en}n°°=l of 12, or equivalently to the sequence of 

disjoint translates rn(t) :-- rn(t - n + 1) in L2(0, oc). Similarly, it follows from 

a remarkable inequality due to H. P. Rosenthal [R] for sequences {fn}n~__l of 

independent mean zero random variables in Lp[O, 1], p _> 2 that the mapping 

fk --+ fk, where ]k(t) := fk(t -- k q- 1)X[k_l,k)(t), t E ~ extends to an isomor- 

phism between the closed linear span [fk]k°°__l (taken in Lp[0, 1]) and the closed 

linear span If ]k=l (taken in Lp[0, co) ~ L2[0, oc)). An extension of Rosenthars 

Inequality to Lorentz spaces Lp,q, 2 < p < oc, 0 < q < oo is given in [CD]. A 

further significant generalization to the class of rearrangement invariant (=r.i.) 

spaces is due to W. B. Johnson and G. Schechtman [JS] who introduced r.i. 

spaces ]Ix and Zx  on [0, oc) linked with a given r.i. space X on [0, 1] and showed 
k n that  any finite sequence { f } k = l  of independent mean zero (respectively, pos- 

itive) random variables in X is equivalent (uniformly in n) to the sequence of 

its disjoint translates in Yx (respectively, Zx),  provided that X contains an 

Lp-space for some p < oc. A key tool in their proof of this equivalence is the 

well-known tail probability inequality due to Hoffmann-Jorgensen [H-J] (for in- 

teresting strengthening of this inequality we refer to the recent papers [HM] 
and [KN]). In particular, it immediately follows from results of [JS] that if the 

k oo sequence {f'}k=l of independent random variables satisfies, in addition, the 

assumption that for all n E N 

n 

(1.1) E A ( { I k  ~ 0}) < 1, 
k--1 

then the correspondence fk ++ fk, k _> 1 between the sequence {f'}k=lk oo and 
~koo oo the disjointly supported sequence {f  }k=l of equimeasurable copies of {fn}n=l 

k oo [fk]k=l extends to an isomorphism between the closed linear spans [f']k=l and - oo 

in X, provided that X contains L;[0, 1] for some p < oo. 

The main question studied in the present paper is the following: for which 
r.i. spaces X and Y on [0, 1] does there exist a constant C = C(X, Y) > 0 such 
that for every sequence {fk }~----i C X of independent random variables satisfying 
(1.1), it follows that 

0.2)  ~ f k  v<_C ~ f k  ? 
k----1 k----1 X 
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We recall that  a complete characterization of rearrangement invariant spaces 

E on [0, 1] for which the Khintchine Inequality holds is due to V. A. Rodin and 

E. M. Semenov [RS] (see also [LT], pp. 134-136). Consider the family of Orlicz 

spaces exp(Lp) = LNp, Np(t) :-- expltl~ - 1, t E I~, p >_ 1. It is shown in [RS] 

that  the correspondence r~ ++ en, n >_ 1 extends to an isomorphism between 
e c~ the closed linear span [r~]n~__l in E and [ ~]n=l in 12 if and only if E contains 

the separable part of the space exp(L2). 

It is proved here that in the setting that X = Y, unlike the situation with 

the Khintchine Inequality, there is no "minimal" r.i. space E such that for every 

r.i. space X D E the correspondence fk ++ /k, k _> 1 for all sequences {fk }k=l 
of independent random variables satisfying (1.1) extends to an isomorphism 

k °c ~k c~ between the closed linear spans [f']k=l and [f']k=l in X. In fact, we show that 

if E is such an r.i. space, then it contains an Lp-space for some p < co. This 

result is the converse (in a certain sense) to [JS], Theorem 1. 

We study the above question for the settings when X = exp(Lp), 1 < p _< cc 

and when X is an arbitrary Lorentz space A¢[0, 1]. In the first case, we show that 

for a fixed p C [1, cc] and X = exp(Lp), the set of all r.i. spaces Y for which the 

inequality (1.2) holds has a unique minimal element, which is the Orlicz space 

LMq, where Mq(t) := e Itllnl/~(e+ltl) - 1, t E]L and q = p / ( p -  1). In the second 

setting, we give a complete characterization of those concave functions ¢ such 

that the correspondence fk ++ /k, k > 1 for all sequences {fk }k~_-i of independent 

random variables satisfying (1.1) extends to an isomorphism between the closed 

linear spans [fk]k=l and [)%]k=1 in Lorentz space A¢[0, 1]. 

Our approach is based on the study of a certain linear operator ]~ on LI[0, 1] 

and is related to the approach previously developed by M. Sh. Braverman [Br] in 

his study of the Rosenthal Inequality in r.i. spaces, which, in turn, was inspired 

by earlier ideas and probabilistic constructions of V. M. Kruglov [K]. We spell 

out these connections in Section 3 below, after introducing all necessary defini- 

tions in Section 2. We study the main question in the Orlicz spaces exp(Lp) and 

the Lorentz spaces A¢ in Sections 4 and 5 respectively. As a by-product of the 

work carried out in Section 5 for Lorentz spaces, we also present there the con- 

verse of the main result from [JS]. The latter application is partly based on the 

results of S. Montgomery-Smith and E. M. Semenov [MS] concerning random 

rearrangements, although our exposition is fairly self-contained. In Section 6, 

we show an easy way to discard the side condition (1.1) and extend our results 

to an arbitrary sequence of independent random variables. In particular, in the 

setting that  X = Y, we recover (and complement) an earlier result from [JS] 
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for the space Zx. Our approach here consists in reducing the study of arbitrary 

sequences of independent random variables to those satisfying condition (1.1). 

We demonstrate the utility of our approach by strengthening recent results of 

S. Montgomery-Smith [M] concerning spaces Z~c, p E (1, co] (which generalize 

results of [JS] for the space Zx). Finally, in Section 7, we present a neces- 

sary condition for an affirmative answer to the main question in the case when 

X = Y .  

ACKNOWLEDGEMENT: We thank the referee for useful comments, in particular 

for the reference [KN]. 

Some of the results of this paper have been announced in [AS]. 

2. Def in i t ions  and  p re l imina r i e s  

We denote by S(f t ) (=  S(f~, 7))) the linear space of all measurable finite a.e. func- 

tions on a given measure space (f~,P) equipped with the topology of 

convergence locally in measure. 

A Banach space (E, [[. liE) of real-valued Lebesgue measurable functions 

on the interval [0,a), 0 < a _~ cc (with identification A-a.e.) will be called 

r e a r r a n g e m e n t  invar ian t  if 

(i) E is an ideal lattice, that  is, if y E E, and if x is any measurable function 

on [O,a) with 0 _~ Ixl < lYl then x E E and IlxllE ~ IlYlIE; 
(ii) E is rearrangement invariant in the sense that if y E E, and if x is any 

measurable function on [0, c~) with x* = y*, then x E E and ]IxiiE = IIYIIE. 
Here, )~ denotes Lebesgue measure and x* denotes the non-increasing, right- 

continuous rearrangement of x given by 

x*(t)=inf{s_>O:~({ixi> s})_<t}, t > 0 .  

For basic properties of rearrangement invariant spaces, we refer to the mono- 

graphs [BS], [KPS], [LT]. 

The Khthe dual E × of a rearrangement invariant space E on the interval 

[0, a) consists of all measurable functions y for which 

{/0 } ]IY]IE× := sup tx(t)y(t)]dt: x E E, tIxIIE <_ 1 < c~. 

Basic properties of Khthe duality may be found in [KPS], [BS] (where the Khthe 

dual is called the a s soc i a t e  space). If E* denotes the Banach dual of E, it is 

known that E × C E* and E × = E* if and only if the norm I[" lIE is order- 

continuous, i.e. from {xn} C E, xn .~n O, it follows that IIXnIIE --)" O. We note 
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that the norm I1" liE of the rearrangement invariant space E on [0,(~) is order- 

continuous if and only if E is separable. The natural embedding of E into 

its KSthe bidual E × × is a surjective isometry if and only if E has the Fatou 
property, i.e. if it follows from {]n}n>>_l C_ E, ] E S[0, c~), fn -+ f a.e. on [0, c~) 

and supn IlfnllE < c~, that f • E and IlfllE <_ l im in fn_~  IlfnllE. Such spaces 
are also called max ima l .  Somewhat weaker than the notion of Fatou property 

of an r.i. space E is the notion of a Fatou norm. If E is a r.i. Banach function 

space on [0, a),  0 < a <__ ~ ,  then the norm H" liE on E is said to be a Fatou 
n o r m ,  if the unit ball of E is closed in E with respect to almost everywhere 

convergence. The norm on the r.i. space E is a Fatou norm if and only if the 

natural embedding of E into its KSthe bidual is an isometry. 

For any r.i. space E on [0, (~), the inclusions 

Ll[0, a) N L ~ [ 0 , a )  C E C__ Ll[0 ,a)  + L~[0,  a) 

hold with continuous embeddings. We denote the closure of LI[0, a) n L ~  [0, a) 

in E by E °. If E # L ~ ,  then E ° is a separable r.i. space. 

If A _C [0, ~ )  is (Lebesgue) measurable, we denote the indicator function of 

A by XA. Given the rearrangement invariant space E, the function 

CE(t) := ll A(')llE, 

where the measurable set A satisfies A(A) = t, is called the f u n d a m e n t a l  

func t ion  of E. 

3. The Kruglov property and the operator 1~ 

Let ] be a measurable function (random variable) on [0, 1]. By ~( f )  we will 

denote a random variable ~-]iN1 fi where fi are independent copies of f ,  and 

N is a Poisson random variable with parameter 1 independent of the sequence 

{fi}. Another (equivalent) definition of ~r(f) may be given via its characteristic 

function as follows, 

¢~(/)(t) = exp( /_~(eitX -1)d.T/(x)), 

where 9v/is  the distribution function of f [Br]. 

Everywhere in this section X stands for an r.i. space on [0, 1]. It will be 

convenient to adopt the following terminology. 
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Definition 3.1: An r.i. space X is said to have the Kruglov property (X E K), 

if and only if 

f E X ¢=~ 7r(f) E X. 

This property has been studied and extensively used by M. Sh. Braverman [Br], 

who noted in particular that  only the implication f E X ~ 7r(f) E X is non- 

trivial, since the implication ~r(f) E X ~ f E X is always satisfied (see [Br], 

p. 11). 
We shall now define an operator E on S([0, 1],)~) which is closely linked 

with the Kruglov property. From a technical viewpoint, it is more conve- 

nient to assume that  this operator takes its values in S(~,  P),  where (~, P)  := 

l-Ik~__0([0,1], )~k) (here,)~k is Lebesgue measure on [0,1] for every k >_ 0). Let 

{En} be a sequence of pairwise disjoint subsets of [0, 1], m(En) = 1/(e .  n!), 

n E l~l. For a given f E S([0, 1], A), we set 

oo  n 

(3.1) t: f(wo, wl, w2, . . .) : :  ~ E f(wk)~(E. (Wo). 
n = l  k = l  

Let also 5: ( f / ,P)  -~ ([0, 1], )~) be a measure preserving isomorphism. For 

every g E S(i),P), we set T(g)(x) := g(5-1x), x E [0,1]. Note that  T is a 

rearrangement-preserving mapping between S(fl, P)  and S([0, 1], A). We shall 

be mainly interested in the operator T E  acting on S([0, 1], A) and by an abuse of 
language frequently refer to the latter operator as )E. From a certain viewpoint, 

our main object of study in this paper is the distribution of K f  (for various 

classes of measurable functions f • S[0,1]). Therefore, it will be convenient to 

adopt the following notation. If f • S([0, 1], A) and {fn,k}~=l is a sequence of 
measurable functions on [0, 1] such that: 

(i) the sequence ]n,1, f n , : , . . . ,  fn,n, ~E,~ is a sequence of independent random 

variables Vn • N; 

(ii) ~'S,.k = ~ ' f ,  V n e N ,  k = l , 2 , . . . , n ,  
then we write 

oo  n 

(3.1)' x•[0,1]. 
n=l k=l 

It is clear that  the distribution function of ]Cf (= TIC f)  is the same as the 
distribution function of IC'f. Frequently, again by an abuse of language, we 

shall also refer t o /C ' f  as )El. 
The main objective of this paper is to study the action of the positive linear 

operator/C on various classes of r.i. spaces X. 
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Our first remark concerning the operator E immediately follows from the 

closed graph theorem (see also [Br], Lemma 1, pp. 11-12). 

LEMMA 3.2: If  X and Y are r.i. spaces on [0, 1] and E f E Y for every f E X, 

then there exists C > 0 such that 

II~flly ~ CIIfllx. 

Let f E S[0, 1] and let E ' f  by defined by (3.1)'. The distribution function of 

the random variable E ' f  is given by 

s v(x) + Ss(x) + 1 = , x E  ~, 
/ = 2  

where (~'/(x)) *t is the/-fold convolution of ~S(') computed at the point x. 

This distribution is a mixture of the discrete Poisson distribution with 

parameter 1 and a family of convolutions of :Ts's, which is frequently referred 

to as the generalized Poisson distribution (see, e.g., [Lu], Ch. 12). Direct com- 

putation shows that the characteristic function ¢~c'S of/C~f is given by 

(/? ) (SKy(t)) = CX:,/(t) = exp (e itz -- 1)d.Tf(x) 
Oo 

= exp(¢f( t)  - 1) = G(f ) ( t ) ,  t E ]~ 

This remark together with Definition 3.1 justifies the following assertion. 

LEMMA 3.3: If  X is an r.i. space on [0, 1], then the operator E maps X 

boundedly into itself if  and only if X E K. 

Remark 3.4: The statement of Lemma 3.3 in terms of operator boundedness 

will enable us later to apply interpolation techniques• 

THEOREM 3.5: Let X C Y be r.i. spaces on [0, 1]. Consider the following 

conditions: 
k n (i) there exists C > 0 such that (1.2) holds for an arbitrary sequence { f  }k=l 

C X of independent random variables satisfying (1.1); 

(ii) there exists C > 0 such that (1.2) holds for an arbitrary sequence {fk}~-=l 

C X of independent identically distributed random variables satisfying 

(1.1); 

(iii) the operator ]C acts boundedly from X into y x  x ; 

(iii)' the operator 1C acts boundedly from X into Y.  
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The following implications hold: (iii)' ~ (i) .z----~ (ii). I f  the space Y is equipped 
with a Fatou norm, then (i)~==~(ii)~=~Oii). 

Proof." The implication (i)==*(ii) is obvious. Assume now that (ii) holds. Fix 

f E X and n E N and choose h C X such that  5Ch = 5of and such that h 
h n and X[0,1/n] are independent. Set hn := hX[o,1/n], and let {X[o,1/n], ~,k}k=l be 

a set of (n + 1) independent random variables such that Yh~,~ = ~-h, for all 

1 < k < n. Since the functions I ~ = 1  hn,kl and [hi have the same distribution 

function, we conclude that  the functions [ ~ 2 = t  hn,k[ and If[ are equidistributed, 

and therefore, by assumption, 

(3.2) L h~,k y -< C L ~tn,k x - -  C I I f l l x .  
k = l  k : l  

A direct computation shows that Ch, (t) = n- iCy( t )  + (1 -- n -1) for all t E If{. 

Hence, the characteristic function of the sum Hn := ~,~'=t hn,k is given by 

CH~(t) = (n - t (¢ f ( t )  -- 1) + 1) n, Vt E I~. 

Since l i m n - ~  CH.(t) = exp(¢/(t)  - 1) = ¢~(f)(t), for all t E II~ we see that 

Hn converges weakly to ~ f .  Combining this with (3.2), with [Br] Proposition 

3, pp. 3-4 and with the fact that the natural embedding of Y into y x  x is an 

isometry, we conclude that IlK:lily _< Cllfllx.  This completes the proof of the 
implication (ii)==*(iii). 

Assume now that (iii) holds, i.e. that  there exists C < o~ such that [[~llx_~y×× 

_< C. We shall first show the assertion (i) under an additional assumption that 
k n the sequence {~'}k=t is symmetrically distributed. In [Pr], Yu. V. Prokhorov 

proved that in this case, if the sequence {hk }~=1 consists of independent random 

variables such that -~h~ = $-,~(I~) for all k = 1, 2 , . . . ,  n, then 

A >_X - - 8 1  hk > ~ , V X > 0 .  

" '  k = l  ' k = l  

It then follows from this inequality (see e.g. [KPS], II.(4.17)) that 

L 1 6 k ~ l h k  Y A v××_< k----1 ~_--- x x 

Setting now f := ~ . = t  fk and taking into account that f k fm = 0 for all k 7~ m, 
we have 

/? (e itx _ 1)dYi(x ) = (e itx _ 1)dhClk (x). 
oo k=l oo 
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Therefore, 
n n 

¢,~(s)(t) = I I  ¢~(s~)(t) = I I  ~ ( t ) ,  t • ~. 
k = l  k-----1 

In other words, 3c,~(S) = f'E~=~ hk and hence, by the assumption, by the equality 
¢7r(/) = ¢~c(y) (see the argument before Lemma 3.3) and by the inequality above, 

~ ] k  y×× 16 ~-~ Y× 16C ~ -  x. <_ hk = 1611Efily×× _< 16CIIflix = fk 
k~--I k----1 × 

Since fk E X, k >_ 1, X C Y and Y has a F a t o u n o r m ,  we conclude that 

II~_,k=l fk[iY <_ 16VII ~ = 1  •lIx, i.e. (i) holds. To complete the proof of 
k n Theorem 3.5, we need to consider the case when the sequence {f'}k=l is no 

longer assumed to be symmetrically distributed. 

Until the end of the proof we fix a number a E (0, 1/2] such that 

(3.3) II~¢[o,~]llY 1 
II~to,x]llY ~ 2 

Combining the well known fact that every r.i. space X on [0, 1] contains L~  
(see [KPS] Ch. 2, Section 4) with the assumption that E maps X into Y××, we 
infer that KX[o,1] E yx×.  It is easy to see that K:X[0,1] ~ L~[0, 1] (see detailed 
computations in Theorem 4.4 below). Therefore, Y×× ¢ L~[0, 1] and hence 
Y ~ L~[0, 1]. The latter fact implies that the fundamental function of Y is 
continuous at 0 (see [KPS], Ch. 2), i.e. the inequality (3.3) is always satisfied 
for an appropriate choice of a <_ 1/2. 

The remainder of the proof will be done in two steps. We first assume that 
k n the sequence {f '}k=l is such that 

n 

(3.4) ~ A({fk ¢ 0}) <_ a. 
k = l  

! n In this case, we shall use the standard "symmetrization" trick. Let {f~}k=l be a 
k n t sequence of independent "copies" of the sequence {] }k=l" We set hk := fk -- fk 

and let Wk: supp(hk) ~ Ek be measure preserving transformations, where Ek 
are pairwise disjoint subsets of [0, 1], k = 1, 2 , . . . ,  n (note that we may choose 
Ek to be pairwise disjoint thanks to (3.4) and the assumption that a < 1/2). 

For s E Ek (respectively, s ~ Ek) and k = 1, 2 , . . . ,  n, we set 

t --1 hk(wkl(8)) ]k(S) := fk(W~-l(S)), ]~'(~) := f~'(Wk (S)), ~ (S)  := 
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(respectively, ]k(s) = ]~.(s) = hk(s) = 0). Clearly, each of the sequences 

{)~}~.=1, {]~-}~=1 and {hk}~-=l consists of pairwise disjoint elements and ~'/k = 

~'fk, 5~/~. = ~[~., 9~h~ = Yhk for all k = 1, 2 , . . . ,  n. It follows now from the 

symmetrization inequality (see [VTC], Ch. 5, Prop. 2.2) that 

A{lhkl > x} < 2£{Ifk I > x/2}, x > O. 

Hence, it follows from (3.4) that, by the first part of the proof, 

n Y-<C ~ h k  t <_4C ~ ] k  X (3.5) ~ hk 
k----1 X k = l  

On the other hand, we note first that  by (3.4) we have II(~k=l fk) X[O,a]IIY = 

II ~-,~=1 fkllr. Now, writing 

( /o ) hk = fk - Eyk -- (y~ -- Efk) Ef := f(x)dx 

and combining [Br], Prop. 11, p. 6 with (3.4), we get that for some constant 

C(Y) we have 

hk > c ( y )  
Y k=l k=l " 

(±) _> C(Y) fk -- E fk Xsupp(Ek= In fk) 
k=l k=l r 

~ C ( Y ) ( l ~ f k  - E  ~-~,fk]']X[O,a]HV)" 
k=l IIY k=l 

Since the inequality ]]fl]Y -> ]IX[o,1] [[rE[f] holds in every r.i. space Y (see [KPS] 
Ch. 2, Theorem 4.1), we infer from the inequality above and (3.3) that 

hk y n t ] fk y > C(Y) ~ fk (1-HX[o,,I[IY~ C(Y) 
k = l  - -  - -  Y H X [ 0 ' I ] H Y  ] ~- 2 k = l  " 

Together with (3.5) this yields (1.2) with the constant 8C/C(Y). 
Finally, let us consider the setting of an arbitrary sequence of independent 

random variables {fk}~.=l C X satisfying condition (1.1). Without loss of gen- 

erality, we may (and shall) assume that  for any b • • and each k = 1 ,2 , . . .  ,n 

we have A{fk = b} = 0. Since the sequence {]k}~=l satisfies (1.1), we can select 

numbers 0 = bo < bl < b2 < --. < bl = oc, where 1 := [l/a] + 1 such that  

n 

ZA{bk-1 <f i<bk}<a,  Vk=l,2,.. . ,1. 
i=l 
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Set fi,k(x) := fi(x)x{b~_l<:~<b~}(x), i = 1 , 2 , . . . , n ,  k = 1 ,2 , . . . , / ,  x e [0,1]. 
l It is clear that  fi = ~k=l fi,k and that  for every k = 1 , 2 , . . . , l  the sequence 

k n {fi, }i=l C X satisfies condition (3.4). Hence, using the first step of the proof 

and the fact that Ifi,kl ~ ]f~l (k = 1 ,2 , . . .  ,1), we obtain 

fi y_ < Efi,k _ <C _ <C 1]+1) 
- -  k = l  i = 1  k = l  i = 1  i = 1  

The proof of the implication (iii) ~ ~ ( i )  follows along the same lines as the 

proof of the implication ( i i i ) ~ ( i ) .  This completes the proof of Theorem 3.5. 
| 

COROLLARY 3.6 ([Br], Lemma 4, p. 13): If  an r.i. space X E K, then there 
k n exists C > 0 such that for every sequence { f  }k=l C X of independent random 

variables satisfying (1.1) we have 

k = l  X k----1 

4. The operator  ~ in e x p o n e n t i a l  Orl icz spaces  exp(Lp), 0 < p _< co 

Let • be an Orlicz function on [0, co), that  is, • is a continuous convex increasing 

function on [0, co) satisfying ¢(0) = 0 and ~(co) = co. The Orlicz space 

Lv = L¢[0, a), 0 < a < co is the space of all Lebesgue measurable functions f 

on [0, a) for which 

o 

for some p > 0. The (Luxemburg) norm in L,~ = L¢[0,a)  is defined by 

[ [ f [ [ ¢ = i n f { p > 0 :  fo~b(lf(t)l)dt<_, P : 1}. 

The Orlicz space L~[0,a)  is maximal. In the case that a < co, L¢[0,a)  is 

separable if and only if ¢ satisfies the A2-condition at co. The space L¢[0, co) 

is separable if and only if (I) satisfies the A2-condition both at co and at 0 (see, 

for example, [BS], [LT]). 

It is easy to see that for every p E (0, co), the function 

[ l /p]  ]tlk p 
Np(t):=e I t l ' -  E k! ' p e ( 0 ' l ) ;  Np(t):=e I t l ' - l ,  p>_l, tell~, 

k----0 
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is an Orlicz function (here, as usual, [l/p] denotes the integral part of 1/p). The 

corresponding Orlicz space, LNp, is frequently denoted by exp(Lp) (exp(Loo) := 

L~).  It follows from the original paper of Kruglov [K] that exp(Lp) E K for all 

0 < p _< 1 and it is noted in [Br] that this is no longer the case when p > 1. For 

completeness sake, we present a simple proof of Kruglov's result. 

PROPOSITION 4.1: If ¢ is an Orlicz function such that for some constant B >_ 1, 

• ( x + y ) < B ~ ( x ) ~ ( y ) ,  Vx, y>O,  

then lC (boundedly) maps L~ into itself. 

Proof: We shall denote f~ f(x)dx 

fo ~(bf(x)D dx -< 1 (i.e. IIf[IL. <- 1) 
dent identically distributed random 

E(~l ~ fkl) _ < BE(~I 
k 1 

b y E f .  Let : = fl  e L¢ withG(~lfl)  := 

and let {fk}kC~=l be a sequence of indepen- 

variables. For every n E N, we have 

n - 1  Zfkf~l:d) 
k=l 
n-1 ) 
~-~fkl E(@lf,,l) < .. ___ B n<. 
k:1 

Using the definition of the operator 

~,(~l~:f]) = 

/C, we obtain 

~E • :~,~x~,. 
n = l  " ' k----1 

= Z E • :~,k E(~(x~o)) 
n = l  " ~ k = l  

< ~(1) Z B~-la(E~) = ~(1) 
n : l  'n,-----1 

@(1)(e B - i) 
- II 

eB 

Combining Proposition 4.1, Lemma 3.3 and Theorem 3.5 we obtain the 

following corollary. 

COROLLARY 4,2: If@ satisfies the conditions of Proposition 4.1, then 

(i) (see [K]) the Orlicz space L~ E l~" 
n (ii) there exists C > 0 such that for an arbitrary sequence {fk}k=l C L~ 

of independent random variables satisfying (1.1), the following inequality 
holds: 

k = l  k = l  L~ 
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We remark that the assertion of Proposition 4.1 (and thus that of Corollary 

4.2) remain valid (with analogous proof) if the Orlicz function • satisfies the 

following condition: 

• (x + y) < B ( ¢ ( x )  + ~(y)) ,  W,  ~ > 0. 

We introduce next the Orlicz functions 

Mp(t) := e Itll"l/'(e+ltl) - 1, p > O, t E ~. 

Denote by k9 the set of increasing concave functions on [0, ~ )  with ~(0) = 

¢(+0) = 0. If ¢ E 9, then the Marcinkiewicz space Me[0, a) consists of those 

measurable functions x for which 

IlXllM~[O,~) == sup 1-2-- x*(t)dt < ~ .  

o<s<~ ¢(~) 

It is useful to note that for every p > 0, the Orlicz space LM, (respectively, 

Lgp) coincides with the Marcinkiewicz space MCp (respectively, MCp), where 

t ln(e/t)  (respectively,¢p(t) := t lnl/p(e/t)) ,  t > O. 
Cp(t) := lnl/p(ln(ee/t) ) 

For the reader's convenience, we include a short proof of this observation 

below. In this proof, as well as in further arguments in this section, we shall 

frequently use the equivalent expressions for the norms on the Marcinkiewicz 

spaces Me. and M¢, on the interval [0, 1] which follow from [KPS] Theorem 

II.5.3, 

t 
ILxll.~ × sup - - ~ *  te(o,1)¢p(t) (t), x e M¢p and 

(4.1) t 
IlxllMo,, × sup x*(t), x e M¢ . 

re(0,1) 

LEMMA 4.3: The equalities LMp = M~p and (exp(Lp) =)LNp = M~p (with 
norm equivalence) hold for every p > 0. 

Proof'. We shall prove only the first equality, since the proof of the second is 

similar (and simpler). Fix p > 0. It is sufficient to prove that the fundamental 

functions CL~, and ¢ ~ , ,  are equivalent and that the function ]p: t --+ ¢~(t)/t  
belongs to the Orlicz space LM~ (see [KPS], Section II.5.4 and (4.1) above). 

Since 

1 lnl/P(ln(ee/t)) 1 
CLMp( t ) - -Mp , (1 / t ) ,  CM~,(t)= In(e/t) ( =  fp( t)) '  t > O  
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( s e e  [BS], Lemma 4.8.17 and [KPS], Theorem II.5.7), it suffices to check that 

the funct ions  M p  I (1 / . )  and fp(.) are equivalent in a neighbourhood of 0. Since 

for every positive c we have 

lnl/P(e + c" ln(e/t) 
l im lnl /V(ln(e~ / t )  ) j ~-- 1, 

t -~o lnl/V(ln(ee/t)) 

we can select 5 > 0 such that for all t E (0, 5) we have 

(4.2) Mv(~fp(t))  <_ e~ ln(e/t) < 1/t <_ e aln(e/t) <_ Mp(2fp(t)). 

It follows from (4.2) that functions Mpl(1/.)  and fp(.) are equivalent in (0, 5). 

Finally, the embedding fp E LM,, follows immediately from the first inequality 

on the left in (4.2). | 

It follows from Proposition 4.1 that for all p E (0, 1] the operator ~ acts 

boundedly on exp(Lp). To describe the behaviour of the operator K: on the 

spaces exp(Lp) for p E (1, oc) we set, for brevity, 

3;p := {the set of all r.i. spaces Y such that 

]C maps exp(Lp) boundedly into Y}, p E (1, oo] 

(with the understanding that exp(Loo) := Loo). 
The following result shows that the space L~  1 plays a crucial role in the study 

of series of uniformly bounded independent random variables (see also [KW], 

Corollary 3.5.2 for a somewhat related result). 

THEOREM 4.4: The set Yoo ordered by inclusion has a unique minimal element, 
LMI. 

Proof: Let g(x) =/CX[0a](x). It follows from the definition of the operator/C 

(see also (3.1)') that 

l k l  ' 
g*(t) = k, Vt E (tk,tk-1), to = 1, tk := - k E N. 

i=k 

Since LM1 coincides with the Marcinkiewicz space M¢1 , it is sufficient to show 

(see (4.1) and the proof of Lemma 4.3) that g*(.) and f(.) := ln(e/.)/ln(ln(ee/.)) 

(= fl from the proof of Lemma 4.3) are equivalent in a neighborhood of 0. Since 
the function f is decreasing on (0, 1) and since the function g* = k on every 

interval (tk-1, tk), k E N, it is sufficient to show that 

1 f(tk-1) lim f(tk) 
< l i m  < - -  < 1.  
- k-+oc k - k-+oo k - 
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k E N  

k!tk = -el (1 + 
1 ) 

~ ( k  + 1)(k + 2) . . .  (k + i )  

1(1  1 ) 
< - 1 +  + 
- e ~ ( k + i ) ( k + i + l )  

1( 
_<- 1+  _<-, 

e e 

11 21  
ek~.<_tk<_ek~, kEN.  

Combining Stirling's formula k! ~,, v / - ~ k k e  -k with the inequality above, it 
follows that for all sufficiently large k, we have 

k -k <_tk <tk-1 <<_ ( k - l )  -½k. 

Thus, 

lim f ( (k  __)-½k) < - 1  lim f (  ~ , , tk-1 ,  < lim 1 f(tk) f ( k  -k) 
= k-~cc k - k-~o~ k - k - ~ - - ~  - < k-~lim k - 1. | 

Remark: An alternative proof of Theorem 4.4 may be obtained via the 
following refined version of the Rosenthal Inequality from [La], 

~-~ f k Lp ~I  L p 
c__p. -< ln(p + 1) fk • 

k=l  

Here {fk}~=l is an arbitrary sequence of independent random variables in 
L~(O, 1) satisfying condition (1.1) and C does not depend on p _> 1. Indeed, 
the inequality above implies that 

sup{ l n ( p + l ) p > l  P ~2~fk L,} _<C ~2-~fk c¢" 
- k=l  k= l  

Using the Taylor decomposition of the function Ml(t) = (t + 1) t - 1 at the 
neighbourhood of 0, it is not hard to see that the left hand side of the preceding 

inequality is equivalent to I1 }--~k=l fkllnM1 (see also [A]). 
Using Corollary 4.2, we shall now show how the result of Theorem 4.4 can be 

extended to all values of p E (1, co). 
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THEOREM 4.5: The set Yp, 1 < p < c~ ordered by inclusion has a unique 
minimal element, LM~, where l ip  + 1/q = 1. 

Proo~ It follows from Proposition 4.1 and Theorem 4.4 that  the operator 

maps boundedly Lc¢ into LM1 and exp(L1) (= LNI) into itself. Hence, using 

the real method of interpolation (see, e.g., [LT]), we infer that  

]C: (L~,LN1)O,o~ -+ (LM~,LN~)O,oo, 0 < ~ < 1. 

By Lemma 4.3, LN~ = Me,,  LM~ ---- M¢~ and it is well known that  the space L ~  

is the Marcinkiewicz space Mid, where id(t) = t for all t >__ 0. Therefore, using 

the known description of the spaces obtained by the real method of interpolation 

in Marcinkiewicz couples (see, e.g., [O], Ex. 7.1.3, p. 428) we obtain 

(L~,LN1)e,~ = LYe_l, (LM1,LN1)e,~ = LM(I_~)_I • 

Setting p = 8 -1 , we immediately infer that  ]C maps LNp into LM,. It now follows 

from (4.1) that  in order to complete the proof of Theorem 4.5, it is sufficient to 

show that  for some scalar C (possibly dependent on p) and all sufficiently small 

t > 0 we have 

ho(t) <_ C(]Cgo)*(t), 

where 
In(e/.) 

go(') := lnl/p(e/") and h0('):-- lnl/q(ln(ee/.) ). 

Since h0 = h i,  the latter inequality holds if and only if for all sufficiently large 

T > 0 we have 

~{t:go > 7-/c} >_ ~{ho > 7-}. 

Further, a direct verification shows that  A{ho > 7-} < e -~tnl/q~- for all suffi- 

ciently large 7-, hence it is sufficient to prove that  A{~go > 7-/3} > e -rlnl/qr, 
or equivalently, 

(4.3) A{]Cgo > 7"} >_ e -3r Inl/qT 

for all sufficiently large 7-. We have 

A(go > 7-} ---- exp(1 - 7--P) >_ e -rp. 

Fix n E N and let gl,g2,. . .  ,gn be independent copies of go. Setting g := 

min(gl, g2 , . . . ,  gn) we have 

n 

~{g  > 7-} = ~(ni%l {gi > ~}) = I I  ~{gi > 7-} > e -nrp 
i----1 
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Hence, using the definition of the operator ]C, we obtain 

A{~:g0 > ~} = 

(oon } 
A E E g n , k X E , ,  > T  

x n.~l k----1 

>_A{~Ftmin{gn,1,. . . ,gn,n}XE,,  >7"} 

oo 

= ~ A{ min gn,k > T/n}A(En) 
k= l ,2 , . . . , n  

oo oo 

> E e _ ~ ( , / . F A ( E . ) =  I_ E e _ . , - , ~ . ~ l  
- -  e n ! "  

n = l  n..=- 1 

Note that if n > vln-1/P(1 + v), then (equivalently) ~-Inl-UP(1 + v) >_ nl-P7 p. 
Therefore, 

(4.4) 

A{~go :> T} > exp(--Tlnl-UP(1 + r))~ E 
n>T ln-1/P( l+r)  

1 exp(-v  In 1-1/p T) 
e[2T In -1/p r]!" 

1 

n! 

Using Stirling's formula, we see that for sufficiently large T 

1 
> exp(--2T In -Up T ln(2T In -Up T)) _> e -2T Inl-'/P T. 

e[2v In -1/p T]! -- 

Combining this estimate with (4.4), we obtain (4.3). This completes the proof 
of Theorem 4.5. | 

COROLLARY 4.6: Let p E (1, c~] and q = p/(p - 1). There exists Cp > 0 such 
that for any finite sequence of independent random variables {fk }~-=1 C exp(Lp) 
satisfying (1.1), we have 

n n 

< cp Zh 
-- L°Mq k=l  Ilexp(Lp) 

Moreover, if an r.i. space Y with a Fatou norm is such that for all sequences 
k n exp(Lp) above we { f~" }k-----X C a s  have 

II  lly < ell ex, L.>k:l 
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then necessarily, L ° C Y. M q  - -  

Proof: If p = oc (respectively, p < oc), then combine Theorems 3.5 and 4.4 

(respectively, 4.5) and use the fact that L °  is the smallest among all r.i. spaces 

Y satisfying Y × × _D LMq. I 

5. T h e  o p e r a t o r  K in L o r e n t z  spaces  

Recall that  • is the set of all increasing concave functions on [0, oo) with g;(0) = 

¢ (+0)  = 0. If ¢ E ~,  then the Lorentz space (A¢[0,a), ]I " ]]i~[0,~)) on [0,a) is 

the space of all measurable functions x on [0, a) for which 

Ilxlh,,[0,.) := / / * ( t ) d ¢ ( t )  < ~ .  

0 

The space A¢[0,a),  1 _4 a < co is always separable. 

The following theorem describes Lorentz spaces A¢ on which the operator/C 

acts boundedly in terms of the function ¢ E ~. 

THEOREM 5.1: Let ~b E 62. The operator ]~ maps the Lorentz space A~ into 
itself (i.e. A ¢ E  K) if and only if there exists C > 0 such that 

oo k 

(5.~) F_,~(~) .  <_ c¢(~), ~ ~ (o,~]. 
k = l  

, n E o o  Proof: Let f := X(o,u] u E (0,1] and let the sequences {fn,k}k=l, {X ~}n=l, 
n • l~ satisfy the conditions (i) and (ii) from (3.1)'. Then, the function f~ := 

~.=1 fi~,k has a binomial distribution with parameter u, i.e. 

A{fn=k}=Cknuk(1-u)  n-k, k = 0 , 1 , . . . , n ,  n e N ,  

where C k = n!/k!(n - k)!. Therefore, we have (see (3.1)') 
(x)  

~:f(s) = E k~A~(s), 
k----1 

where 

c¢ ~ k) 'uk(i ~. ~(Ak)= ~ C~uk(1-u)n-~(E~)= _1 ~! _~)~_~ 
n=k e n=k k!(ni 

_ 1  u k ~-,  ( 1 - - u ) n _ l U k ( 1 - - U ) k ~ - ~  ( l - - u )  ~ 
Z-, - /_ .  ~f (1- u)kk~ ~ - - ~  ~ ~ - ~ - ~  ~=0 n~.k 

u k 

~ e - - ' a  
k!" 
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Hence, the function K:f has Poisson distribution with parameter u, which 

coincides with the distribution of the function 
o o  

h(s) := E x(0,~k](s), s e [0,1], 
k=l  

where Vk := e -~ ~-~i~=k(ui/i!), k E N. Therefore, 

(5 .2 )  It~:fllAv, = IlhltA, = d e ( s )  = Tk). 
k-~l -- 

S ince  K: is a bounded positive operator from A¢ into the space S[0, 1], and since 

the extreme points of the positive part of the unit sphere of the space A¢ are 

given by all normalized indicator functions of measurable subsets of [0, 1], it is 

sufficient to verify the boundedness of K on A¢ on the set of all such functions 

(see Corollary 1 to Lemma 5.2 in [KPS], Chapter I1.5). Therefore, it follows 

from (5.2) that K acts boundedly on the space A¢ if and only if there exists 

C > 0 such that 
o 0  

(5.3) E ¢ ( T k )  <_ C¢(u), Vu E (0,1]. 
k=l  

It is easy to show (see a similar argument in the proof of Theorem 4.4) that 

1 u k u k 
- - -  <Tk < VkEN. e k! - 2 - ~ . ,  

Combining this inequality with the fact that ~ is a concave function, we infer 

that (5.3) and (5.1) are equivalent conditions. II 

Remark 5.2: Arguing in a similar fashion, it can be shown that for a given 

¢ E • the operator K boundedly maps A¢ into Mt/¢(t) (or, equivalently, using 

customary language of interpolation theory [KPS], [BS] the operator K is of 

weak type (¢, ¢)) if and only if 

k¢(uk/k!)  
(5.4) sup < oo. 

uE(O,1],kEN ~)(U) 

Indeed, let u, rk ,k  E N and functions f ,  h = /~f be as in the proof of 

Theorem 5.1. It is not difficult to see that we may compute the norm of h 

in the Marcinkiewicz space Mt/¢(t) as follows: 

Tk O0 
l/)(Tk) f l  ( E i = I  X(o,~,)(s))ds IlhllM,/,,,, = s u p  

kEN Tk 

= sup ¢(~k)[(k -- 1)~k + E i : k  7-/] × sup(k¢(~k)). 
kEN, Tk kEN 
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The estimate (5.4) now follows exactly as in the proof of Theorem 5.1. 

The condition (5.1) for concave functions ~b e q2 appears also in [MS] (see Eq. 

(23) there), which studies random rearrangements in r.i. spaces. The following 

technical estimate is established in [MS], Lemma 11. 

LEMMA 5.3 ([MS]): If  ¢ e • is such that ~b(1) = 1 and ¢(t)  _< at lip for edl 

t E [0, 1] and some p, a • [1, oo), then 

1 oo (Uk) 
(5.5) sup ~ ¢ < 5ap. 

_ - 

A special case of the following result is given in [Br], Theorem 2, p. 16. 

COROLLARY 5.4: If  an r.i. space X with a Fatou norm contains Lp[0, 1] for 

some p • [1,oo), then the operator ]C acts boundedly from X into X ×× . In 
k n particular, there exists C > 0 such that for an arbitrary sequence {f '}k=l  C X 

of independent random variables satisfying (1.1) we have 

(5.6) ~-~fk x < _ C  ~ ] k  x" 
k----1 k----1 

Proof (i) By the definition of X × ×, we have for every x • X × × 

{/o I } Ilxllx×x := sup Ix(t)y(t)ldt: Y • X×,HYlIx× < 1 . 

This can also be interpreted as 

(5.7) X ×× = hAck, IIxllx×~ = supllxllA,,,, 

where the intersection and supremum are taken over all % • ~P such that 

Cy(t) = y*(s)ds, t • [0,1], y • X ×, IlYlIN× < 1. 

Following [MS], for every such % • @ we set 

o ~ ( t )  . -  ¢~(t) + t 
Ilylla + 1 (y • x x, t • [0,1]). 

Clearly, 0y • @ and 0u(1) = 1 for all y • X × . Since (see [KPS], (11.4.6)) 

1 
Ilylll + 1 <_ ~ l l y l l x ~  + 1 _< Cx(1) + 1, y • X ×, Ilyllx× < 1, Cx× (1) 
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we deduce that  

(5.8) IlXllA¢~ < ( ¢ x 0 )  + 1)IIxlIA,~, X • X × × , y  • X ×, IlVllxx < 1. 

On the other hand, for all x's as above, it follows from (5.7) that  

1 1 
IlxllA~ < IlxllA¢~ + Ilxlli < IIxlIA~ + CXX,,O-'------~IIxlIx×× < (1 + ~ ) l l x l l x x ~ .  

Combining this estimate with (5.7) and (5.8), we see that  

X ×× = MA0y, Ilxllxx× × sup IlxllA~y, 
ycx× ,llyllx × <1 

where the intersection is taken over all 6u's as above. Further, it follows from 

the assumption Lp C X that  X × C L~ = Lq (here q = p--~_~). Therefore, again 

using [KPS], (II.4.6), we arrive at 

O~(t) < y*(s)ds + t <_ Ilyllqtl/P + t < allyllxxtl/p + t < (a + l)t 1/p. 

It follows now, from Lemma 5.3 and from Theorem 5.1 (and its proof), tha t /C 

maps A0~ into itself for every y • X × with Ilyllx× < 1, and moreover 

sup IIIClIA~A,~ = C < ~ .  
Ilvllx× 51 

Thus for every x E X × × we have 

II/Cxllx×× × sup II/CxlIA~ _ C sup IlxllAo~ × Ilxllx××. 
t l~/lx × _<1 Ilvllx× <_1 

Since X is equipped with a Fatou norm, the result now follows from Theorem 

3.5. | 

The proof of the following assertion may be obtained in the same way as in 

the proof of Theorem 14 [MS] and is therefore omitted. 

LEMMA 5.5: If  ¢ • q,  ¢(1) = 1 is such that for any ¢ • q with ~b(1) = 1 

and ¢ < ¢ condition (5.4) holds, then necessarily ¢(t) _< at ~ /'or some a >_ 1, 

a • (0,  1] and all t • [0, 1]. 

Using Remark 5.2 and Lemma 5.5, it is now possible to prove the converse, 

in a certain sense, to the main result of [JS] (for normed r.i. spaces). 



146 S.V. ASTASHKIN AND F. A. SUKOCHEV Isr. J. Math. 

COROLLARY 5.6: I f  an r.i. space E is such that for every maximal r.i. space 

X D E there exists C > 0 such that (5.6) holds for an arbitrary sequence 
k n {f'}k--1 C X of independent random variables satisfying (1.1), then E contains 

an L;-space for some p E [1, oo). 

Proof'. According to [KPS], Theorem II.5.7, E C_ Mt/¢~, where CE is the 

fundamental function of E. Therefore, for every function ¢ E • such that 

¢ <_ CCE for some constant C > 0, we have E C Mt/cz~(t) C_ Mt/¢(t). Hence, 

by the assumption and Theorem 3.5, the operator ~ boundedly maps Mt/¢(t) 

into itself and this implies (see Remark 5.2) that condition (5.4) holds for every 

function ¢ as above. By Lemma 5.5 this guarantees that CE(t) _~ CE(1)at a for 

some a _> 1, a E (0, 1] and all t E [0, 1]. The latter fact and [KPS], Theorem 

II.5.5 guarantee that  E _ AV~ _3 A~ and since At~ contains Lp[0, 1], p > 1/a, 

we are done. I 

COROLLARY 5.7: I f ~  E ff2 is such  t ha t  for every  a E (0, 1] 

sup t -a~(t)  = oo, 
rE(0,1] 

then there exists ¢ E • such that ¢ ~_ C~b for some C > 0 such that the operator 

]C is not bounded on any r.i. space X with the fundamental function Cx = ¢. 

The preceding results show that it is not possible to answer the main question 

(see Section 1) in terms analogous to the Rodin-Semenov characterization of r.i. 

spaces satisfying the Khintchine Inequality. It should be also mentioned that 

there are many r.i. spaces which have the Kruglov property and which do not 

necessarily contain some Lp-space, 1 < p < ec (see, e.g., Corollary 4.2). The 

next proposition presents a general method to exhibit such examples among 

Marcinkiewicz spaces. 

PROPOSITION 5.8: For every quasi-concave non-negative function p on [0, 1], 

let ~( t ) := p(tlne/t) .  I f~ ( t ) :=  t/¢(t),  t E [0, 1], then M~ E K. 

Proof'. We denote by l~o(1/p) the space of all two-sided scalar sequences a = 
oo {ak}k=-oo such that 

{ ak ~oo I] 
llall~(llp) ~ Jk=-ooII~ < oo. 

Since, by Proposition 4.1, the operator/C is bounded on L1 and LN1, we infer 
K K 

")l~(i/p) that  it is also bounded on the space (L1,LN1)l~(1/p), where (., is the 
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functor of the real interpolation method, generated by the parameter lo0 ( l /p)  

(see, e.g., [O] Section 7.1, p. 421). Considering the spaces L1 and LN~ as 

Marcinkiewicz spaces and applying [O], Ex. 7.1.3, p. 428 (compare with the 

proof of Theorem 4.5), we obtain (L1, LN1 )loo(1/p)K = M& | 

6. Compar ing  independent  sums to disjoint sums in the  general  case 

Here we consider the main question (see Section 1) in the setting when the 

condition (1.1) is no longer assumed. We shall show that the condition X E K 

remains sufficient for a (modified) inequality between the sums of independent 

random variables and their disjoint copies to hold. For an arbitrary r.i. space 

X on [0, 1] and an arbitrary p • [1, ~ ] ,  we define a function space Z~ on [0, oc) 

by 

Z~ : :  { f  • L a [ O , ~ ) +  L~[O, ~ ) :  Ilfll~ := Hf*x[o,1]llx -4-IIf*x[1,~)llp < ~ } .  

Clearly, II • is a quasi-norm. It is easy to see that Z ]  equipped with the 

equivalent norm 

IIflIz~ := IIf*x[o,1]iIx + IIflt(Ll+Lp)(o,oo), f • ZPx 

is an r.i. space on [0, c~). Indeed, the equivalence of the quasi-norm II " I1~ and 

the norm I1" ]lZx follows from the well-known formula 

f0' Ilfil(L,+L,,)(o,oo) x f*(x)dx -4- ( (f*(x))Pdx) 1/p, f • (L1 + Lp)(0, c~), 

where the second summand vanishes when p -- ~ and the equivalence constants 

do not depend on p E [1, oc) (see [BL]). 

The space (Zx, I1" IIzx) := (Z~, II " IIz~) was introduced in [JS] and our first 
result in this section complements [JS] Theorem 1 (see inequality (4) there). 

THEOREM 6.1: Let X and Y be r.i. spaces on [0, 1] such that X C_ Y. If either 
(i) the operator ]C acts boundedly from X into y x x  and Y has Fatou norm, or 
(ii) the operator JC acts boundedly from X into Y, then there exists C1 > 0 such 
that for every sequence {gi},~l C X, n E N, of independent random variables, 
the following inequality holds: 

(6.1) ~ g i Y  K-c1 ~ Zx gi • 
i= l  /=1 
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Proof: Without loss of generality we may (and shall) assume that gi _> 0 and 
that A{gi = v }  = 0 f o r a l l T  E l ~ a n d a l l i =  1 , 2 , . . . , n .  F i x 0 = t ~  < t~- i  
< .." < tl < to = cc such that 

n 

Z A{tj < gi < tj-1 } = 1, 
i=1 

j = 1 , 2 , . . . , n .  

For the sequence {giX{gi>h}}inl condition (1.1) is satisfied, hence by Theo- 
rem 3.5 

(6.2) 
E gix{g~>t~ 

l 
< -- iX{~i>tl 

l 

: C (Zgi ) '~( [O,1]  X 
i=1 

C n _< ~ i  • 
i=1 II Zx 

Similarly, condition (1.1) is also satisfied for sequences {gixltj<g,<tj_l}}inl 
(j = 2, 3 , . . .  n), hence 

Z gix{g~<tt} 
i=1 Y 

<_ g~x{tj<9,<tj_l} 
j----2 i=l 

< C  ~ ~]iX{t~<~i<tj-1} 
j.=2 - 

n 

_<CtlX[o,IlIIX Z tj-1 
j=2 

~ C  ( gi)* ~[O,ll 
_ x 

n-1  n *X{t j<~i<t j -1}  

j=2 

~'~ ~i x 

n-1 *X[j-I,j] ) 
"~ H)~[O,1]HX S ( ~ g i )  

j=2 i=1 1 

_<Cmax{1,11~:[o,~lllx} ~ D ~  zx" 
i=1 

1) 

Combining this estimate with (6.2) we arrive at (6.1). | 
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We can now complement Theorem 3.5, Corollary 4.2, Corollary 4.6 and 

Theorem 5.1 as follows. 

COROLLARY 6.2: The following condition is equivalent to conditions (i)-(iii) in 

Theorem 3.5: 

(iv) the inequality (6.1) holds for every sequence {gi}n=l C X, n e N, of 

independent random variables. 

COROLLARY 6.3: /f(~ is an Orlicz [unction such that for some constant B > 1, 

¢(x  + y) < Vx, y > 0, 

then there exists C > 0 such that for any finite sequence of independent random 

k n variables { f  }k=l C L~ we have 

~ l f k  L, <-- C ~=l]k ZL ¢" 

COROLLARY 6.4: For every p E (1, co] there exists a constant C(p) such that 

for every sequence {gi}inl C exp(Lp), n E N, of independent random variables, 

we have 

gi o - < O~ , 1/q + l / p =  l. 
i = 1  Luq i=1 

COROLLARY 6.5: Let ¢ E ~. There exists C' > 0 such that, for any finite 
k n sequence of independent random variables { f  }k=l C A¢, we have 

k=l A¢ k = l  []ZA ,, 

if and only if there exists C > 0 such that (5.1) holds. 

The next corollary extends [JS], inequality (10) which was proved there under 

the assumption that the r.i. space X contains an Lp-space, p < oo. 

COROLLARY 6.6: Let X be an interpolation space for the Banach couple 

(Ll(0,1),Loo(0,1)). ff  the operator IC acts boundedly on X,  then there 
k n exists a constant C > 0 such that for every sequence {g }k=l C X,  gk > O, 

k n 1 < k < n, n E N and every sequence { f  }k=l of independent random variables 

such that g~. = f~, 1 < k < n, the following inequality holds: 

l n l  ! n 
_ X / = 1  I I X  
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h n Proof: It follows from [CDS], Lemma 2.3 that  for any sequence { ~}i=1 of 

non-negative functions from S(0, 1), we have ), f(n ). 
fZk (s)ds <_ E hk (s)ds, Vt > O. 

k = l  k = l  " 

It is easy to infer from the well-known description of interpolation spaces for 

a couple (L1, Loo) (see, e.g., [KPS], Theorem 11.4.3) that the space Zx is an 

interpolation space for the Banach couple (Ll(0,oo),  Loo(0, o~)). Without loss 

of generality, we may (and shall) assume that the interpolation constant of Zx 
is equal to 1. Therefore, it follows from the inequality above, our assumptions 

on fk's and gk's and [KPS], Theorem 11.4.3 that  

k = l  IIZx k=l  

A combination of this inequality with Theorem 6.1 completes the proof. I 

In the remainder of this section, we shall show how our methods may be used 

to complement results from [M]. 

Following [LT] p. 46, we define the space X(lp) as the set of all sequences 

f = {fk(x)}~=l, fk • X,  k _> 1 such that 

Ilfllx-uZD) : =  s u p  I/kl p < oo 
n _ X 

(with an obvious modification for p = oo). The closed subspace of X(lp) gener- 

ated by all eventually vanishing sequences f • X(Ip) is denoted by X(Ip). 
Before proceeding, we recall the following construction due to A. P. Calderon 

[C]. Let Xo and X1 be two Banach lattices of measurable functions on the same 
3 ( 1 - 0 ¥ ' / 7  measure space ( M , m )  and let 19 • (0,1). The space ~o ~1 consists of all 

measurable functions f on ( M , m )  such that for some ,k > 0 and f~ • X~ with 

II/illx, _ 1, i = 0, 1, 

[f(x)l <__ Alfo(x)ll-°lfl(x)l °, x • .All 

equipped with the norm given by the greatest lower bound of all numbers A 

taken over all possible such representations. Even though this construction is 

not an interpolation functor on general couples of Banach lattices (see [Lo]), 

it is still a convenient tool of interpolation theory. Indeed, if (Xo,X1) is a 

Banach couple and if (Yo, Y1) is another Banach couple of lattices of measurable 
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functions on some measure space (M',  m'), then any positive operator A from 

S ( M ,  m) into S(J~ ' ,m') ,  which acts boundedly from the couple (X0, Xa) into 

the couple (Y0, Y1), also maps boundedly X I - e x e  1 into Yol-eY1 e and, in addition, 
1-6  IlA]lx~-Oxf_.+v~-~vo < [[Al[xo__+vo[IA[[°__+v ~ for all 0 • (0,1). The proof of 

the latter claim follows by inspection of the standard arguments from [LT], 

Proposition 1.d.2(i), p. 43. 

The following theorem is proved in [M], in the special case that X = Y and 

Lq C_ X for some q < oo. At the same time the result of [M] is concerned with 

sequences of random variables in a general symmetric sequence space, whereas 

we consider here the case of/p-spaces only. 

THEOREM 6.7: Let X and Y be r.i. spaces on [0, 1] such that X C_ Y and 

let p • [1,c¢]. If  either (i) the operator lC acts boundedly from X into Y×× 

and Y has Fatou norm, or (ii) the operator E acts boundedly from X into Y,  

then there exists C > 0 which depends on X and Y only such that for every 

C X,  n • N, of independent functions, the following n sequence g = {9i}i=l 
inequality holds: 

c (6.1)' Ilgllv(t,,) -< ffi - 

Proof'. Let T be the rearrangement-preserving mapping between S(~, P) and 

S([0, 1], A) introduced in Section 3. We define the positive linear mapping Q 
from S(0, c~) into S(f~, p)•u{o} by setting 

, ~) (Qf(wo,wl . . . ) := {fk( k)}k=o, f • S(O, oc), 

where fk(Wk) := f(wa+k), k > O. The proof of Theorem 6.7 will be completed as 
soon as we show that the positive linear operator Q' := TQ is a bounded linear 
operator from Z p into Y(lp). The key observations are that the operator Q' 

acts boundedly from Z~ = Zx into Y(la) and from Z ~  into Y(l~) .  Indeed, the 

first observation follows immediately from Theorem 6.1 (if one takes into account 

that for every sequence g = {gi}inl C X, n • N, of independent functions in X, 

the sequence Igl := {Igil}in--1 C X is again a sequence of independent functions 

and that II ~-~in_-I ]9il]lzx = II ~i~1 9illzx). The second observation follows from 
a combination of the equivalences 

f ! oo Ilfllz  x II Ilzx × IIf*xto,xlllx vy  • 

(where the equivalence constants do not depend on the r.i. space X and f • Z~)  
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with the inequalities 

x[0,i] > < max Ifkl > < x[o,1] > w > 0, 
--  k----1,2,...,n 

k n where {f  }k=l C X, n E N, is a sequence of independent random variables in 

X and ] := Z~=I ]k (see [HM], Proposition 2.1). 

It follows that 

Q': (Z~i) i-6(Z~) 0 --~ ( y ( ~ l ) ) l - ° ( Y ( l ~ ) )  ~ 

and its norm is uniformly bounded with respect to 0 E (0, 1). The proof is 

complete by noting that for all 0 E (0, 1) we have 

1 
(6.3) ZPx C_ (Z~) I -e (Z~)  °, (Y( l l ) ) l -e(Y( l~))  e C Y(lp), p -  

1-0" 

To see the first embedding above, fix g = g* E Z~, Hgl[z~ = 1 and set 

gl :-- gx[0,1] + gPx[1,oo), g¢~ := gx[0,1] + X[1,oo)" 

Clearly, g = (gl)l-°(goo) ° and it is a straightforward verification that gi E Zix 
and Ugillz~ -< C, i = 1,00, where C > 0 does not depend on p. The second 

embedding in (6.3) (in fact, equality) is shown in [Bu], Theorem 3. | 

Remark 6.8: The assertion established in Theorem 6.7 follows from the bound- 
edness of a certain linear operator from Z~( into Y(lp), which is a consequence 

of the boundedness of this operator from the couple (Z~, Z~)  into the couple 

(Y(/1), Y(lc~)). By using Calderon-Lozanovskii's construction (see, e.g., [O], 

Section 8.2 and also [Bu]), it is possible to extend this result to more general 

spaces than Z p and Y(Ip), but we have not pursued this subject in the present 

paper. 

7. Final  r emarks  

It follows from Corollaries 5.6 and 5.7 that the assumption exp(L1) C_ X is not 

sufficient for an r.i. space X to have the Kruglov property. We shall present a 

concrete example of a Lorentz space A¢ without the Kruglov property satisfying 

exp(L1) C A¢. 

PROPOSITION 7.1: If a~(t) := In -1 7 " ln-Z( In e° 5-), t E [0,1], /~ > 1, then 
exp(L1) C A~,  but the latter space does not have the Kruglov property. 

Proof: It is sufficient to verify that the function a~ does not satisfy condition 

(5.1) for every/~ > 1. Such a verification is straightforward but technical, and 

we omit detailed calculations. | 
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We present now some necessary condition for a r.i. space X to have the 

Kruglov property. 

For n E N, we denote the nth repeated logarithm by ln,~ and set 

On(u) := exp(ulnn(cn + u)) - 1, lnn Cn = 1. 

The Orlicz space L¢. coincides with the Marcinkiewicz space M~., where 

uln(elu) 
~n(u) := lnn+l(ee, lu) ,  u e (0,1]. 

Let X be an r.i. space. The assumption exp(L1) C_ X seems to be necessary 

for the operator K to act boundedly on X. The following result is a step towards 

proving this conjecture. 

THEOREM 7.2: If  the operator E acts boundedly on the r.i. space X ,  then 

L,r,, C X for every n E N. 

Proof  Since L ~  C_ X, it follows from Theorem 4.4 that 

ln(e/.) 
fl (') .-- in(in(eel.)) EX,  

Noting that A{fl > 1"} x e -rln(l+r) and arguing as in the proof of Theorem 

4.5, we get 
oo 

A{K:fl > T} > C~_e -'rln(l-{-v/n) l-- 
- h i "  

n : l  

If n > Tln--i(T/e), then Tln(1 + T/n) < win(In(v)) and therefore 

(7.1) > _> l /n! .  
n>[2~ l . -  ~ (v/e)] 

Using Stirling's formula for sufficiently large r 's  we estimate 

[2rln -1 ~]! 
_> exp(_2Tln_ 1 T ln(2Tln_ 1 _T)) _> e_3L 

e e 

Applying (7.1), we obtain for all sufficiently large r 

(7.2) A{~fl  > T} > Ce-rln(ln(r))e-3r > e -4tIn(In(r)). 

Note that for the Marcinkiewicz space M~., n >_ 1 the analogue of formula (4.1) 

holds. Therefore, to prove that M~2 is contained in X, it is sufficient to show 
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that  the function f2 (t) := t --+ ~2 ( t ) / t  belongs to X. In particular, it is sufficient 

to verify that  there exists a constant C > 0 such that  for all sufficiently large T, 

(7.3) > < cA{ I, > 

Direct calculations now show that  for sufficiently large ~- we have A{f2 > 7} _< 

Ce-ar ln0n(T)), i.e. (7.3) now follows from (7.2). Repeating the same arguments 

and calculations for the function/C f2 we infer further that  the function ]3(t) := 

t -+ ~3(t)/t belongs to X and so on. This completes the proof of Theorem 7.2. 
| 
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